Journal of Organometallic Chemistry, 170 (1979) C18–C20 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

ALKYL- AND ARYL-PLATINUM(II) COMPLEXES FROM K_2 [PtCl₄] AND TETRAORGANOTIN COMPOUNDS IN DIMETHYLSULPHOXIDE. PREPARATION AND REACTIONS OF COMPLEXES [PtR₂(DMSO)₂] AND [PtR(C) (DMSO)₂][‡]

COLIN EABORN^{*}, KALIPADA KUNDU and ALAN PIDCOCK^{*} School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received February 14th, 1979)

Summary

The reaction between $K_2[PtCl_4]$ and a variety of tetraorganotin compounds $SnMe_3R$ (R = Me, aryl) in DMSO gives the complexes *cis*-[PtR₂(DMSO)₂] and *trans*-[PtR(Cl)(DMSO)₂] in which the DMSO ligands are bound to Pt through S in the solid state. The DMSO ligands are easily displaced by a variety of N, P, As and Sb donors.

The introduction of alkyl or aryl ligands into platinum (II) complexes normally requires the conversion of the usual starting material $K_2[PtCl_4]$ into an uncharged complex $[PtCl_2L_2]$ [where, for example, $L = PR_3$ or $\frac{1}{2}$ COD (COD = cycloocta-1,5-diene)], which is usually isolated and purified before treatment with an organometallic reagent. Work in this laboratory has shown that the tin compounds SnMe₃R are convenient reagents for conversion of Pt—Cl into Pt—R, especially when the Pt—Cl bond is activated as in $[PtCl_2(COD)]$ [1]. We now report that the tin compounds react with *cis*- $[PtCl_2(DMSO)_2]$ (DMSO = dimethylsulphoxide) which can be obtained in situ from $K_2[PtCl_4]$ in DMSO.

Typically, $K_2[PtCl_4]$ (2 mmol) was dissolved in DMSO (8 cm³) at room temperature, an excess of SnMe₃R (R = Me, aryl; 4–10 mmol) added, and the mixture stirred for several hours at 70–90°C. After removal of DMSO under vacuum at 70°C, the complex was isolated by stirring with diethyl ether and recrystallising the solid thus obtained from dichloromethane/ether. This procedure gave the pure complexes *cis*-[PtR₂(DMSO)₂] in good yields (Table 1); experiments in which the products were examined before recrystallisation or in which they were converted into phosphine complexes showed that the diaryl complexes

[‡]No reprints available.

TABLE	L
-------	---

COMPLEXES OBTAINED	FROM K_[PtCl.]	AND SnMe_R IN	DMSO ^a
--------------------	----------------	---------------	-------------------

Complex	Conditions ^b (°C/h)	Yield (%)	Colour	М.р. (°С) ^с
cis-[PtMe2(DMSO)2]	70/20	14	white	122
cis-[PtPh2(DMSO)2]	70/4	63	white	136
$cis-[Pt(C_6H_4Me-p)_2(DMSO)_2]$	80/20	58	off-white	146
cis-[Pt(C ₆ H ₄ OMe-p) ₂ (DMSO) ₂]	70/6	80	off-white	142
$cis-[Pt(C_6H_4Cl-p)_2(DMSO)_2]$	90/10	52	white	154
$cis-[Pt(C_4H_3O-2)_2(DMSO)_2]^d$	25/12	14	yellow	142
trans-[PtMe(Cl)(DMSO)2]	70/20	26	white	120 ^e
trans-[PtPh(Cl)(DMSO) ₂]	70/4	39	yellow	162 ^e
trans-[Pt(C6H4Me-p)Cl(DMSO)2]	80/5	19	yellow	164
trans-[Pt(C,H,Cl-p)Cl(DMSO)]	80/6	33	yellow	162

^aSatisfactory C and H analyses were obtained for all complexes. ^bTemperature (°C) and duration of reaction, see text. ^cComplexes blacken at stated temperature; melting occurs at ca. 20° higher temperature. ^dC₄H₃O-2 = 2-furyl. ^eComplex melts with decomposition.

are formed virtually quantitatively, and that the lower yields shown in Table 1 result from losses in recrystallisation.

The solid complexes were shown to have the *cis*-configuration with Pt—S bonds by the presence in the IR spectra of two bands from $\nu(Pt-S)$ between 433 and 412 cm⁻¹ and two bands from $\nu(S-O)$ between 1135 and 1070 cm⁻¹. That the configuration is the same in deuterochloroform solution can be inferred from the coupling constants ${}^{3}J(PtSCH)$ (ca. 15 Hz) in the ¹H NMR spectra. The observation of this coupling indicates the presence of S-bonded DMSO ligands [2], and its magnitude, which is substantially smaller than in *cis*-[PtCl₂(DMSO)₂] (23 Hz), shows that the ligand is *trans* to the high *trans* influence R ligands.

The complexes $[PtR(Cl)(DMSO)_2]$ were obtained by use of $K_2[PtCl_4]$ and SnMe₃R in equimolar proportions. These complexes have single bands in the IR spectra corresponding to $\nu(Pt-S)$ (420–418 cm⁻¹), $\nu(S-O)$ (1130–1120 cm⁻¹) and $\nu(Pt-Cl)$ (300–275 cm⁻¹), so they have trans configurations with Pt-S bonded DMSO ligands in the solid state. The ¹H NMR spectra in deuterochloroform are somewhat more complicated than those of the diorganoplatinum (II) complexes; the methyl protons of the DMSO ligands give rise to a broadened line split by ¹⁹⁵Pt (³J(PtSCH) ca. 26 Hz) characteristic of S-bonded DMSO trans to a ligand of low trans influence, but less intense broad lines are also present in this region. It is evident that exchange processes, possibly involving O-bonded DMSO ligands [2], are occurring in these solutions, and we are investigating the phenomenon further.

The synthetic utility of reactions 1-3, which are involved in our procedures, is enhanced by the ease of displacement of the DMSO ligands by, for example,

 $K_{2}[PtCl_{4}] + 2 DMSO \rightarrow cis-[PtCl_{2}(DMSO)_{2}] + 2KCl$ $cis-[PtCl_{2}(DMSO)_{2}] + SnMe_{3}R \rightarrow trans-[PtR(Cl)(DMSO)_{2}] + SnMe_{3}Cl$ $[PtR(Cl)(DMSO)_{2}] + SnMe_{3}R \rightarrow cis-[PtR_{2}(DMSO)_{2}] + SnMe_{3}Cl$ (3)

2,2'-bipyridyl, PPh₃, 1,2-bis(diphenylphosphino)ethane, P(OPh)₃, AsPh₃, and SbPh₃ to form the corresponding organoplatinum complexes of these ligands. These displacements may be carried out after isolation of the DMSO complex or directly on the mixture obtained from K_2 [PtCl₄] after removal of the excess of DMSO.

Acknowledgements

We thank the Commonwealth Scholarship Commission (U.K.) for a Commonwealth Academic Staff Scholarship for K.K.

References

- 1 C. Eaborn, K.J. Odell and A. Pidcock, J. Chem. Soc. Dalton, (1978) 357.
- 2 J.H. Price, A.N. Williamson, R.F. Schramm and B.B. Wayland, Inorg. Chem., 11 (1972) 1280.